Brian Smith (Rochester, MN)
smithbr@us.ibm.com

Rajiv Bendale (bendalecus ibm.com)

Kirk Jordan (< ordancus ibm.com)
Jerrold Heyman ((heyvmancous iom.com)

Bo

b Walkup (walkup@us.ibm.com)

© 2007 IBM Corporation

MPI on BG/P

= BlueGene/P Quick Introduction
—BG/P Hardware
—Software

= MPI Implementation on BlueGene/P

— General Comments and Optimization Suggestions
= |/O On BGP

© 2007 IBM Corporation

= Up to 2563 compute processors
— Largest machine: 40960 nodes at ANL
— Relatively slow processors (850 MHz)

— But -- low power, low cooling, very high density

= System-on-a-chip technology (4 cores, 8 FPUs,
memory controllers, networks, etc on single ASIC)

= 3 very high-speed application networks

— Torus network has a DMA engine

A2 1432 101

PPC450

Cicaulnde FFU

A% 1432 101

PPC450

Dowuinde FFU

2% 11432k D1

PPC450

Dicauinde FFU

2% 11432k D1

PPCA450

Dicauinds FFU

Hylbrid
FrL

W SRAM

Ao

A

i LAGhs
Ividirectional

I LsGhis
hidirectional

4 ploleal
hearriers or

interrupts

10 ks

(L1112

156 Cihis
VAN bus

MPI on BG/P

= Offshoot of PPC440 Processor

= 32-bit architecture at 850 MHz

= Single integer unit (fxu)

= Single load/store unit

= Special double floating-point unit (dfpu)

= |1 Data cache : 32 KB total size, 32-Byte line size,
— 64-way associative, round-robin replacement
— 4 cores on BG/P are L1 cache coherent

= |2 Data cache : prefetch buffer, holds 16 128-byte lines

= |3 Data cache : 8 MB

= Memory : 2 GB DDR, ~13.6GB/s bandwidth

= Double FPU has 32 primary floating-point registers, 32 secondary floating-point
registers, and supports :

— standard powerpc instructions, which execute on fpuO (fadd, fmadd, fadds, fdiv, ...),
and

— SIMD instructions for 64-bit floating-point numbers (fpadd, fpmadd, fpre, ...)
= Floating-point pipeline : 5 cycles

© 2007 IBM Corporation

MPI on BG/P

* Double Hummer FPUs
— 2 64bit FPUs
— Not independent though
— Requires careful alignment considerations

— Compilers are good now, but hand-tuning critical sections
might be necessary/valuable

© 2007 IBM Corporation

MPI on BG/P

Mandatory Scaling Slide

System
1 to 72 or more Racks
Rack Cabled 8x8x16

32 Node Cards z
1024 chips, 4096 procs [IF &

() ¢
AN D SR
&.—L"S_—‘,E; Y\

Node Card
(32 chips 4x4x2)
32 compute, 0-2 IO cards

1 PF/s +
144 TB +

Compute Card
1 chip, 20
DRAMs <*

435 GF/s

64 GB
Chip
4 processors
. 13.6 GF/s
2.0 GB DDR
13.6 GF/s Supports 4-way SMP

8 MB EDRAM

© 2007 IBM Corporation

MPI on BG/P

= 4 of the top 20 machines are Racks | Installs Ranking
BlueGene/P 40 1 3
16 1 6
10 1 8
8 1 13
4 1 37
3 2 51
2 2 74

© 2007 IBM Corporation

MPI on BG/P

3 Dimensional Torus

— Interconnects all compute nodes
« Communications backbone for computations
— Adaptive cut-through hardware routing

____ — 3.4 Gb/s on all 12 node links (5.1 GB/s per node)

— 0.5 ps latency between nearest neighbors, 5 us to the farthest
* MPI: 3 us latency for one hop, 10 ps to the farthest

— 1.7/2.6 TB/s bisection bandwidth
= Collective Network
— Interconnects all compute and 1/O nodes
— One-to-all broadcast functionality
— Reduction operations functionality
— 6.8 Gb/s of bandwidth per link
— Latency of one way tree traversal 2 us, MPI 5 ps

Low Latency Global Barrier and Interrupt
— Latency of one way to reach all 72K nodes 0.65 ps, MPI 1.6 ys

Other networks

— 10GDb Functional Ethernet

* 1/O nodes only
— 1Gb Private Control Ethernet

* Provides JTAG access to hardware.

© 2007 IBM Corporation

MPI on BG/P

= Compute Node Kernel (CNK)

— Minimal kernel — handles signals, function shipping
syscalls to I/O nodes, starting/stopping jobs, threads

— Not much else
— Very “linux-like”, uses glibc

* Missing some system calls (fork() mostly)
— Limited support for mmap(), execve()

* But, most apps that run on Linux work out-of-the-box on
BG/P

© 2007 IBM Corporation

Virtual Node Mode (VNM)

= Each core gets its own MPI rank,
kernel image

SMP

Full memory available

All resources dedicated to single
kernel image

= 4x the computing power

= Not necessarily 4x the performance

Can startup to 4

— Each core gets 2 memory pthreads/OpenMP threads

— Network resources split in fourths _ OMP NUMTHREADS=x

— Cache splitin half (L3) and 2 cores -
share each half Dual

— Memory bandwidth split in half = Hybrid of the two modes

— CPU does compute and = 2x MPI ranks of SMP, each rank
communication, though DMA helps can start 1 additional thread

— Global communication can be

. = 2 memory of SMP per rank
expensive

— No threads

MPI on BG/P

= Compilers
— IBM XL compilers (f77, f90, C, C++)

 Latest version 11.1 for fortran and 9.0 for C/C++
— GNU (gcc, g++, gfortran) also available

— IBM ESSL libraries optimized for BG/P
* Good community success with gotoBLAS, ATLAS
— MASS(V) libraries

— Applications are built on the front-end nodes via cross
compiling

© 2007 IBM Corporation

MPI on BG/P

= Control System
— Runs on service node

— Compute nodes are stateless
« State information is stored in db2 databases

— Database also monitors performance, environmentals,
etc

— Boots blocks, monitors jobs, etc

— Interaction via Navigator, LoadLeveler, etc.

© 2007 IBM Corporation

MPI on BG/P

Scalable Configurations: Compute / 10 Node ratio
— 16, 32, 64, 128 to 1.

I0 node specs
— Max bandwidth per 10 Node = 1250 MB/s (10 Gb/s Ethernet)

Streaming 10 (Sockets) performance

— We've seen 500+ MB/s but we don’t have a good test environment in
Rochester

— 10 can scale linearly due to parallel IO

CIOD environment variables to fine tune file system
performance
— CIOD_RDWR _BUFFER_SIZE

« Should be set to the GPFS block size (typically 2MB or 4MB)

— Really only set-able by sysadmins. Need to set up the 10 node ramdisk image
to have the env var

© 2007 IBM Corporation

MPI on BG/P

= |/O Node Kernel
— Linux (MCP)

— Very minimal distribution (almost everything on the I/O
node is in busybox)

— Only connection from compute nodes to outside world

— Handles syscalls (ie fopen()) and I/O requests

© 2007 IBM Corporation

MPI on BG/P

* The stack:
— SPI
— DCMF/CCMI
— MPI, GA/ARMCI

= Optimizations

© 2007 IBM Corporation

MPI on BG/P

Support many programming paradigms

Non blocking communication
— Support for asynchronous communication where possible

Open source messaging runtime
— Extendible

— Component oriented design
— http://dcmf.anl-external.org/wiki
— Mailing list

General Availability will have product version of software
— Extensions provided through contribs

© 2007 IBM Corporation

MPI on BG/P

Open CCMI Collective Layer UPC
Sourced ‘ (barrier, broadcast, allreduce) messaging

Message Layer Core (C++)

= Multiple programming paradigms supported
— MPI and ARMCI, Charm++ and UPC (as research initiatives)

= SPIl : Low level systems programming interface
= DCMF : Portable active-message API

© 2007 IBM Corporation

MPI on BG/P

= System programming interface
= Very low level, basically right on top of the hardware

= Use is complicated, but can provide the best possible
performance

Very stable interface.

Doxygen comments, plus look at higher levels for examples
Used by DCMF, some QCD codes

© 2007 IBM Corporation

MPI on BG/P

= Non blocking runtime
= Multiple Protocol Registration
= Active Messaging API

= Essentially just point-to-point interfaces:
— DCMF_Send, DCMF_Put, DCMF_Get
— DCMF_Multisend

= DCMF_Messager_advance()
— Call handlers
— Call callbacks when the counters have hit zero

= Heavily doxygenated, lots of usage examples
= Good performance/complexity tradeoff for applications

= Portable
— Sockets interface available soon, currently running on a number of platforms

: Fairly) stable interface (one or two minor changes on the horizon for BGP
V1R3

= Proposed BoF for SC08
= Paper at ICS08

© 2007 IBM Corporation

MPI on BG/P

= Component Collective Message Interface

— Portable layer for collectives

 Basically requires a multi-send protocol to implement our
optimized collectives

* We have an MPI multi-send implementation
— Paper being presented at Euro PVM/MPI

— Sits on top/to the side of DCMF

© 2007 IBM Corporation

MPI on BG/P

* The primary function of BG/P: running your MPI-
based applications

= Our MPI looks suspiciously like MPICH2 1.0.x
— “MPI standard 2.0-"

— No process management (MP1_Spawn(), MP1_Connect(),
etc)

— Based on MPICH2 1.0.7 base code

— We are working closely with ANL to re-integrate all BGP
changes in their main tree

© 2007 IBM Corporation

MPI on BG/P

= ARMCI - Aggregate remote memory copy
interface

* From PNNL
= Sits on top of DCMF and MPI

= Very good performance, close to straight DCMF
code

= Paper being presented at ICPP in Seattle

© 2007 IBM Corporation

= Global Arrays from PNNL

= Used by major applications (NWChem, GAMESS-
UK, ScalaBLAST, gp-shmem, GAMESS-US, etc)

= Sits on top of ARMCI and MPI
= Support for large distributed arrays

* Considered “Technology Preview”

— We are working closely with PNNL to improve support of
GA/ARMCI on BGP (performance)

MPI on BG/P

Communications
Optimizations

© 2007 IBM Corporation

MPI on BG/P

= Point-to-point
— DMA Tuning

= Mapping

= Collectives

— Our strategies

© 2007 IBM Corporation

MPI on BG/P

= Change rendezvous messaging size
— Larger partitions should have lower cutoff
— Increase cutoff if mostly nearest-neighbor communications

— Environment variable: DCMF_EAGER=xxxxx or
DCMF_RVZ=xxxxx or DCMF_RZV=xxxxx

PALLAS (PingPing) Performance, 512 nodes CoProcessor mode

— Default: 1200 bytes Driver=DRV100_2006_060310, BGLMP|_EAGER=10000

160

140
120 ol
\ /'5 e WT0,SWOAO
100
3% —m— WTO0,SWOA1
80
{ WT1,SWOAO

60
- WT1,SWOA1
40
20 '
O F T

1.E+00 1.E401 1.E402 1.E#+03 1.E+04 1.E+05 1.E406 1.E+07

Mbytes/sec

Payload (bytes)

© 2007 IBM Corporation

MPI on BG/P

= Overlapping communication and computation:

— Easier on BG/P than BG/L

— Keep programs in sync as much as you can

 alternate computation and communication phases

— Post receives/waits early and often

— Try interrupts

— DCMF_INTERRUPTS=1
— Very narrow region of overlap

= Processors are slow relative to network speed

© 2007 IBM Corporation

Message Size (bytes)

1e+07 ¢
Tet06 -
100000 ¢

10000

1000 ¢
100 r

10

Send Overlap Ratio Profile, BGP

1 10 100 1000 10000 100000
Compute Time (us)

Message Size (bytes)

Te+07 ¢
le+06 -
100000 |-

10000 ¢

1000 ¢
100 -

10

Send Overlap Ratio Profile, BGP (interrupts)

1 10 100 1000 10000 100000
Compute Time (us)

Hessage Size {(bytes>

16407

1e+86 |

100000 |

10000 -

1600 |

160

18

Overlap Ratio Profile - BGP, Receive

1600 16600 160000 1e+86 1e+07

Conpute Tine {us)

\atio

Overlap Ratio Profile, BGL = Receive with Interrupts

1000 16000 100000 1le+86

Conpute Tine {us)

le+07

MPI on BG/P

= Avoid load imbalance/“master node”

— bad for scaling

= Shorten Manhattan distance messages have to traverse

— send to nearest neighbors!

© 2007 IBM Corporation

MPI on BG/P

Avoid synchronous sends
— increases latency

— Sometimes required to prevent unexpected messages and memory
problems

— Usually best to rethink
Avoid buffered sends

— memory copies are bad and bsend is pointless on this implementation

Avoid vector data, non-contiguous data types

— BG/P MPI doesn't have a nice way to deal with them (requires at least one
memcopy, usually 2) and no BG/P specific optimizations

Post receives in advance/often
— unexpected messages hurt performance and take memory

Be cache friendly: align to 16 byte (32 byte is even better)
— More in compiler talk, but __alignx() and disjoint pragmas.

© 2007 IBM Corporation

MPI on BG/P

= DCMF_RECFIFO=xxxx
— Default 8mb
— Size (in bytes) of each DMA reception FIFO
— Larger values can reduce torus network congestion, but takes application memory
— Note: In VNM this is 8mb PER RANK

= DCMF_INJFIFO=xx
— Default is 32k
— Size (in bytes) of each DMA injection FIFO
— Larger values can help reduce overhead when there are many outstanding messages
— DCMF messaging uses up to 25 injection FIFOs.
— Rounded up to a multiple of 32 (each descriptor is 32 bytes)

© 2007 IBM Corporation

MPI on BG/P

= DCMF_RGETFIFO=xx
— Default 32k
— Size (in bytes) of the remote get FIFOs.

— Larger values can help reduce overhead when there are many
outstanding messages

— DCMF messaging uses up to 7 remote get FIFOs.
— Rounded up to the nearest multiple of 32

= DCMF_POLLLIMIT=x
— Default 16

— This sets the limit on the number of consecutive non-empty polls of
the reception FIFO before exiting the advance function

— A value of 0 means stay in advance until the FIFOs are empty

© 2007 IBM Corporation

MPI on BG/P

= DCMF_INJCOUNTER=x
— Defaultis 8

— Sets the number of DMA injection counter subgroups that
DCMF can use. Maximum is 8.

— Only useful if something else is using the DMA, ie, an
application making SPI calls directly

= DCMF_RECCOUNTER=x

— Same as INJCOUNTER, but for reception counter
subgroups.

© 2007 IBM Corporation

MPI on BG/P

= DCMF_FIFOMODE=DEFAULT/RZVANY/ALLTOALL

— Determines how many injection FIFOs are used and what they are
used for

— DEFAULT uses 22 injection FIFOs.
— RZVANY uses 6 more remote get FIFOs than DEFAULT.

— ALLTOALL uses 16 alltoall FIFOs (instead of 6) that can inject into
any of the torus FIFOs.

— Try RZVANY if your app uses lots of large messages
— Try ALLTOALL if your app does lots of alltoall communications

— Note: RZVANY and ALLTOALL consume more memory — 32k per
extra FIFO

— Note: You can’t coexist with “native” SPI calls if you aren’t in
DEFAULT mode

© 2007 IBM Corporation

= Mapping can help point-to-point based codes

= Stock mappings implemented already — XYZT, XZYT, YXZT,
YZXT, ZXYT, ZYXT, TXYZ, TXZY, TYXZ, TYZX, TZXY, TZYX

= Default mapping in VNM/Dual is XYZT (sorry about that)
— Cores on the same node are not contiguous MPI ranks
—specifying TXYZ can be very helpful

. @mesyArbitrary mapping files can be used

= mpirun —mapfile XYZT

= mpirun —mapfile /path/to/my/mapfile.txt

MPI on BG/P

E
0
0
0
0

xample:

OO0
—_ 00
-0 =0

= Line number in file is desired MPI rank. Each node
in partition must be listed in file.

= Coordinates are X, Y, Z, and core ID (virtual node
mode/dual mode)

© 2007 IBM Corporation

MPI on BG/P

= APIs to map nodes to specific hardware and/or pset configurations

— MPIX_Cart_comm_create()

* Returns an MPI communicator that is exactly the same as the underlying
hardware

« Eliminates need for complex node-mapping files
— MPIX_Pset same_comm_create()

* Returns a communicator where all nodes belong to the same pset
— MPIX_Pset_diff comm_create()

* Returns a communicator where all nodes have the same pset rank

— MPI_Cart_create() with reorder true attempts to give communicators
that mirror hardware

= DCMF_TOPOLOGY=0 disables any attempt to give good
communicators from MPI_Cart_create() calls

© 2007 IBM Corporation

= Creates a 4D Cartesian communicator
— Mimics the hardware
— The X, Y & Z dimensions match those of the partition

— The T dimension will have cardinality 1 in copro, 2 in dual, 4
in VNM

— The communicator wrap-around links match

— The coordinates of a node in the communicator match its
coordinates in the partition

= Important
— This is a collective operation and must be run on all nodes

— Check the return code when using this function! Look for
MPI_SUCCESS

= Creates communicators where
the members share an I/O
node

= Useful to maximize the
number of /O nodes used
during I/O operations

— Node 0 in each of the
communicators can be arbitrarily
used as the “master node” for
the communicator, collecting
information from the other nodes
for writing to disk.

Pset 1

Pset 2

All nodes in the communicator have
a different I/O node

Rarely used without using
same_comm() too

— Nodes without rank 0 in
same_comm() sleep

— Nodes with rank 0 in same_comm()
would have a communicator created
with diff_comm(). That
communicator could be used
instead of MPI_COMM_WORLD for
communication/coordination of I/O
requests

Pset 1

Pset 2

Pset 3

Pset 4

MPI on BG/P

= Currently optimized collectives:
— Broadcast (COMM_WORLD, rectangle, arbitrary)
— (AlDreduce (COMM_WORLD, rectangle, arbitrary)
— Alltoall(v|w) (all comms, single threaded only)
— Barrier (COMM_WORLD, arbitrary)
— Allgather(v) (uses (async)bcast, reduce, or alltoall)
— Gather (uses reduce)
— Reduce_scatter (uses reduce, then scatterv)
— Scatter (uses bcast)
— Scatterv (uses alltoallv or bcast with an env var)

© 2007 IBM Corporation

MPI on BG/P

= Use collectives whenever possible

— For example, replacing lots of sends/recvs with an
alltoall(v)

— Bad idea to implement collectives using your own point-
to-point based algorithm

* Too much overhead on point to point communications
» Using MPI Send/Recv has message matching overhead
« Can’t take advantage of BG/P networks

© 2007 IBM Corporation

MPI on BG/P

= Optimized collectives can be disabled if necessary
— DCMF_COLLECTIVE=0 or DCMF_COLLECTIVES=0

— Disabling all can save application memory space, at the expense of performance
(~10mb)

— Specific collectives can be forced to use MPICH:
- DCMF_{}=MPICH eg, DCMF_BCAST=MPICH
— Specific collectives can attempt to use certain algorithms:
« DCMF_ALLGATHER=ALLTOALLVY DCMF_SCATTERV=BCAST

= Generally unadvisable to force alternative algorithms.
= “Well-behaved” applications can also use:

— DCMF_SAFEALLGATHERV=Y

— DCMF_SAFEALLGATHER=Y

— DCMF_SAFESCATTERV=Y

© 2007 IBM Corporation

MPI on BG/P

= Reduce/Allreduce:

— If the tree supports the operation and datatype and you are on
COMM_WORLD, use the tree

— else if you are on a rectangular communicator use a rectangular
allreduce algorithm

— else use a binomial algorithm
— else use MPICH

= Barrier:
— If you are on COMM_WORLD, use Gl
— else use binomial
— else use MPICH

© 2007 IBM Corporation

MPI on BG/P

= Bcast
— If COMM_WORLD use tree

— Else if communicator is rectangular use an async
rectangle protocol for small messages, then switch to
synchronous

- DCMF_ASYNCCUTOFF=8192

— Else if communicator is irregular use an async binomial
protocol for small messages, then switch to synchronous

« DCMF_ASYNCCUTOFF=16384
— Else use MPICH

© 2007 IBM Corporation

MPI on BG/P

= Allgather(v)
— If treereduce and treebcast available and large message

» Use bcast. If smaller message use reduce

— If rectangular subcomm send a number of async bcasts, walit,
repeat

« DCMF_NUMREQUESTS=32 is default

— If irregular subcomm send a number of async binom bcasts,
wait, repeat

« DCMF_NUMREQUESTS=32 is default
— Else use alltoall

— Else use MPICH

© 2007 IBM Corporation

MPI on BG/P

* Performance hints/suggestions
— Avoiding deadlock
— Bad coding ideas
— Touching buffers early
— Mixing collectives and point-to-point

— Flooding one node

© 2007 IBM Corporation

MPI on BG/P

Talk before you listen.

lllegal MPI code
— find it in most MPI books

BlueGene/P MPI is designed not
to deadlock easily.

— It will likely survive this
code.

This code will cause MPI to
allocate memory to deal with
unexpected messages. If MPI

runs out of memory, it will stop
with an error message

CPU1 code:
MPIl_Send (cpu2);
MPI_Recv(cpu2);

CPU2 code:

MPIl_Send(cpu1);
MPI_Recv(cpu1);

© 2007 IBM Corporation

MPI on BG/P

= Post receives in one order,
sends in the opposite order

= This is legal MPI code

= BlueGene/P MPI can choke if the
sum of buffers is greater than
the amount of physical memory

— Packet Pacing helps

...but try to avoid doing
this anyway

© 2007 IBM Corporation

CPU1 code:
MPI_ISend(cpu2, tag,);
MPI_ISend(cpu2, tag,);

MPI_ISend(cpu2, tag,);

CPU2 code:
MPI_Recv(cpu1, tag,);
MPI_Recv(cpu1, tag.,);

MPI_Recv(cpu1, tag,);

MPI on BG/P

= write send/receive buffers req = MPI_Isend (buffer);

before completion buffer[0] = something:

— results in data race on any MPI_Wait(req);
machine — ’

= touch send buffers before

message completion req = MPI_Isend (buffer);

z = buffer[0];
MPI Wait (req);

— not legal by standard
— BG/P MPI will survive it today

— no guarantee about tomorrow

= touch receive buffers before
completion req = MPI_Irecv (buffer);
— BG/P MPI will yield wrong z = buffer[0];
results MPI Wait (req);

© 2007 IBM Corporation

MPI on BG/P

Code:
req = MPL_Isend(...);

MPI_Test (req);
— Or looping until MPI_Test returns _Test (req)
true ... do something else; forget about req ...

= Have to wait for all requests
— The standard requires waiting

— Otherwise, you are leaking
requests

= MPI_Test advances the message
layer on each call

= We don’t get much comm/compute
overlap so just do the MPl_Wait
instead of an MPI_Test.

© 2007 IBM Corporation

MPI on BG/P

= On the ragged edge of CPU 1 code:
legality req = MPI_Isend (cpu2);
= BlueGene/P MPI works MPI_Barrier();

MPI_Wait(req);

Multiple networks issue:

— Isend handled by torus
network

— Barrier handled by Gl network |[CPU 2 code:
MPI_Recv (cpu1);

MPI_Barrier();

Try to avoid this

© 2007 IBM Corporation

MPI on BG/P

= This is legal MPI code

— also ... bad idea
CPU 1 to n-1 code:

— not scalable, even when it MPI_Send (cpu0);

works

= BlueGene/P MPI can run out of
buffer space (packet pacing

helps though) CPU 0 code:
= One (bad) solution — use SSend for (i=1; i<n; i++)
— Forces synchronicity MPI_Recv(cpul[i]);

— Giant performance hit

= Plenty of examples of this out
there

— Don't write code such as this

— Even if you think it should
work

© 2007 IBM Corporation

MPI on BG/P

= Try multiple masters

— Need to find optimal master/submaster/worker
arrangement

* If funneling to one node for I/O
—Try MPI 1/O

— Use the communicator creation functions to optimize 1/O
usage

© 2007 IBM Corporation

MPI on BG/P

= BG/P supports the full MPI 10 implementation
= BG/P specific “device”, plus support for GFPS, PVFS
= Also use the MPIX_Pset_{} comm_create routines

= Env vars for tuning

— BGLMPIO_COMM - Defines how data is exchanged on collective reads/writes.
Default is 0 — Use MPI_Alltoallv. 1 uses MPI_Isend/Irecv

— BGLMPIO_TUNEGATHER — Tune how offsets are communicated for
aggregator I/O. Default is 1 — Use MPI_Allreduce. 0 uses two MPI_Allgather
calls

— BGLMPIO_TUNEBLOCKING — Tune how aggregate file domains are
calculated. Default is 1 — Use the underlying file system’s block size and use
MPI1_ALLTOALLYV to exchange information. 0 says evenly calculate file
domains across aggregators and use MPI_Isend/Irecv to exchange the
information

© 2007 IBM Corporation

MPI on BG/P

* Red paper/redbook coming soon for things to tune
on your service node to improve GPFS
performance

= Until then, use the MPIX_Pset {} functions and do
as much as you can at the app level for 10 tuning

= We can help with specific 10 questions too

© 2007 IBM Corporation

MPI on BG/P

Questions?

© 2007 IBM Corporation

